Abstract

Abstract The usefulness of measurements from satellite-borne instruments is enhanced if these measurements can be compared to measurements from other instruments mounted aboard the same or different satellite, with measurements from aircraft, or with ground measurements. The process of associating measurements from disparate instruments and platforms is referred to as collocation. In a few cases, two instruments mounted aboard the same spacecraft have been engineered to function in tandem, but commonly this is not the case. The collocation process may then become an awkward geometric problem of finding which of many observations within one dataset corresponds to an observation in another set, possibly from another platform. This paper presents methods that can be applied to a wide range of satellite, aircraft, and surface measurements that allow for efficient collocation with measurements having varying spatial and temporal sampling. Examples of applying the methods are presented that highlight the benefits of efficient collocation. This includes identifying the occurrence of simultaneous nadir observations (SNOs); collocation of sounder, imager, and active remotely sensed measurements on the NASA Earth Observation System (EOS); and collocation of the polar orbiting imager, sounder, and microwave measurements with geostationary observations. It is possible, using an inexpensive laptop computer, to collocate Moderate Resolution Imaging Spectroradiometer (MODIS) imager observations from the Aqua satellite with geostationary observations rapidly enough to deal with these measurements in real time, making either dataset, enhanced by the other, a potentially operational product. A “tool kit” is suggested consisting of computer procedures useful in collocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call