Abstract
Restricted mean survival time (RMST) has gained increased attention in biostatistical and clinical studies. Directly modeling RMST (as opposed to modeling then transforming the hazard function) is appealing computationally and in terms of interpreting covariate effects. We propose computationally convenient methods for evaluating center effects based on RMST. A multiplicative model for the RMST is assumed. Estimation proceeds through an algorithm analogous to stratification, which permits the evaluation of thousands of centers. We derive the asymptotic properties of the proposed estimators and evaluate finite sample performance through simulation. We demonstrate that considerable decreases in computational burden are achievable through the proposed methods, in terms of both storage requirements and run time. The methods are applied to evaluate more than 5000 US dialysis facilities using data from a national end-stage renal disease registry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.