Abstract

This paper studies robust energy optimization for the cloud radio access network (C-RAN). The objective of this paper is to jointly minimize network power consumption through optimizing the base station (BS) mode, multi-user (MU)-BS association, and beamforming vectors given imperfect channel state information (CSI). To solve this non-trivial problem, we first transform the problem to a semi-definite programming (SDP) one using the S-lemma with the aid of the semi-definite relaxation technique, and then propose a SDP-based group sparse beamforming approach to solve it iteratively. Since the computational complexity of solving SDP problems is intractable, we propose to translate the uncertainty in the CSI to the uncertainty in its covariance matrix, and then recast the original problem as a mixed-integer second-order cone programming problem. We further propose a two-stage rank selection framework to determine the BS mode and MU-BS association separately and successively. Simulation results demonstrate the convergence of our proposed algorithms, and validate the effectiveness of the proposed algorithms in minimizing the network power consumption of the C-RAN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.