Abstract

The problem of inverting measured gravity data for large regions is of a great importance for planetary structure studies. Unfortunately, the usual methods of local gravity field inversion do not scale up well. There are three primary factors that start to play significant role: topography or terrain surface with large height differences, spherical geometry of the planet, and high computational complexity. In our previous work we were separately considering each of those problems in detail. In this paper however, we will address those issues simultaneously, offering a complete and computationally effective method of recovering spherical density model of Earth's crust with the upper topography layer. The method utilizes a closed form expression for the discretized model's gravity field which allows for great accuracy and speed without enforcing restrictions on model geometry or gravity field data grid. Inversion process is based on the conjugate gradient method. An example of inversion for a synthetic regional model is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.