Abstract

We used density functional theory to computationally design a Zr organometallic catalyst for selectively oxidizing substrates using molecular oxygen as oxidant without coreductant. Each selective oxidation cycle involves four general steps: (a) a peroxo or weakly adsorbed O2 group releases an O atom to substrate to form substrate oxide and an oxo group, (b) an oxygen molecule adds to the oxo group to generate an η2-ozone group, (c) the η2-ozone group rearranges to form an η3-ozone group, and (d) the η3-ozone group releases an O atom to substrate to form substrate oxide and regenerate the peroxo or weakly adsorbed O2 group. This catalyst could potentially be synthesized via the condensation reaction Zr(N(R)R′)4 + 2 C6H4–1,6-(N(C6H3–2′,6′-(CH(CH3)2)2)OH)2 → Zr(C6H4–1,6-(N(C6H3–2′,6′-(CH(CH3)2)2)O)2)2 [aka Zr_Benzol catalyst] + 4 N(R)(R′)H where R and R′ are CH3, CH2CH3, or other alkyl groups. For direct ethylene epoxidation, the computed enthalpic energetic span (i.e., effective activation energy for the entire catalytic cycle) is 27.1 kcal/mol, which is one of the lowest values for catalysts studied to date. We study reaction mechanisms and the stability of different catalyst forms as a function of the oxygen atom chemical potential. Notably, an aromatic linkage in each ligand prevents this catalyst from deactivating to form an inactive octahedral-like structure that contains the same atoms as the dioxo complex, Zr(Ligand)2(O)2. Due to a side reaction that can transfer an allylic H atom from alkene to catalyst, this catalyst is useful for directly epoxidizing alkenes such as ethylene that do not contain allylic H atoms. To better understand the reaction chemistry, we computed net atomic charges and bond orders for the two catalytically relevant reaction cycles. These results quantify electron transfer and bond forming and breaking during the catalytic process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call