Abstract

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with cytotoxic payloads. However, the present strategies for the synthesis of ADCs either yield unstable or heterogeneous products or involve complex processes. Here, we report a computational approach that leverages molecular docking and molecular dynamics simulations to design ADCs that self-assemble through the non-covalent binding of the antibody to a payload that we designed to act as an affinity ligand for specific conserved amino acid residues in the antibody. This method does not require modifications to the antibody structure and yields homogenous ADCs that form in less than 8 min. We show that two conjugates, which consist of hydrophilic and hydrophobic payloads conjugated to two different antibodies, retain the structure and binding properties of the antibody and its biological specificity, are stable in plasma and improve anti-tumour efficacy in mice with non-small cell lung tumour xenografts. The relative simplicity of the approach may facilitate the production of ADCs for the targeted delivery of cytotoxic payloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.