Abstract

Metamaterials continue to be conceptually intriguing for the manipulation of propagating waves. However, preventing low-frequency wave propagation proves to be challenging, due to limited metamaterial dimensions and mass. This study focuses on a metamaterial lattice featuring geometrically nonlinear behavior that can lead to negative stiffness, aimed at overcoming the requirement of large mass for low-frequency vibration attenuation. This approach can find application in structural engineering to protect against low-frequency excitations---such as earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.