Abstract

The present analysis reports a computational study of Magnetohydrodynamic (MHD) flow behaviour of 2D Maxwell nanofluid across a stretched sheet in appearance of Brownian motion. The substantial term thermal radiation and chemical reactions have been employed extensively in the current research. Nanofluids are usually chosen by researchers because of their rheological properties, which are important in determining their appropriateness for convective heat transfer. The present research reveals that the fluid velocity augments for the enhanced values of all the parameters. Heat source, as well as the radiation parameters, ensure that there is enough heat in the fluid, which implies escalation of the thermal boundary layer thickness by accruing radiation parameter. Moreover, streamlines and isotherms have been investigated for the different parametric values. The suggested model is valuable because it has a wide range of applications in domains including medical sciences (treatment of cancer therapeutics), microelectronics, biomedicine, biology, and industrial production processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.