Abstract

To address problems in Breakthrough Propulsion Physics (BPP) one needs sheer computing capabilities. This is because General Relativity and Quantum Field Theory are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available “symbolic manipulator” codes: Macsyma, Maple V and Mathematica. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in General Relativity and Quantum Field Theory. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using the different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the chief NASA BPP goal: the design of the NASA Warp Drive. It is thus concluded that NASA should put order by establishing international standards in symbolic tensor calculus and enforcing anyone working in BPP to adopt these NASA BPP Standards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call