Abstract

The most important factor affecting metabolic excretion of compounds from the body is their half-life time. This provides an indication of compound stability of, for example, drug molecules. We report on our efforts to develop QSAR models for metabolic stability of compounds, based on in vitro half-life assay data measured in human liver microsomes. A variety of QSAR models generated using different statistical methods and descriptor sets implemented in both open-source and commercial programs (KNIME, GUSAR and StarDrop) were analyzed. The models obtained were compared using four different external validation sets from public and commercial data sources, including two smaller sets of in vivo half-life data in humans. In many cases, the accuracy of prediction achieved on one external test set did not correspond to the results achieved with another test set. The most predictive models were used for predicting the metabolic stability of compounds from the open NCI database, the results of which are publicly available on the NCI/CADD Group web server ( http://cactus.nci.nih.gov ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.