Abstract

Tuberculosis is an infectious disease that is caused by Mycobacterium tuberculosis (MTB), which mostly affects the lungs of humans. Bright-field microscopy and fluorescence microscopy are two major testing techniques used for tuberculosis (TB) detection. TB bacilli were identified and counted manually from sputum under a microscope and were found to be tedious, laborious and error prone. To eliminate this problem, traditional image processing techniques and deep learning (DL) models were deployed here to build computer-aided diagnosis (CADx) systems for TB detection. In this paper, we performed a systematic review on image processing techniques used in developing computer-aided diagnosis systems for TB detection. Articles selected for this review were retrieved from publication databases such as Science Direct, ACM, IEEE Xplore, Springer Link and PubMed. After a rigorous pruning exercise, 42 articles were selected, of which 21 were journal articles and 21 were conference articles. Image processing techniques and deep neural networks such as CNN and DCNN proposed in the literature along with clinical applications are presented and discussed. The performance of these techniques has been evaluated on metrics such as accuracy, sensitivity, specificity, precision and F-1 score and is presented accordingly. CADx systems built on DL models performed better in TB detection and classification due to their abstraction of low-level features, better generalization and minimal or no human intervention in their operations. Research gaps identified in the literature have been highlighted and discussed for further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call