Abstract

Just over ninety years ago, the first edition of D’Arcy Thompson’s book On Growth and Form appeared. Much of it is long out of date, but D’Arcy Thompson makes a point of fundamental importance in his discussion of the morphology of inorganic crystals in biological systems. He points out that the deposition of minerals in the living body, the complex shapes and symmetries often seen, cannot be explained by simple ideas of crystal packing. He speculates (and in 1919 it could be no more than speculation) on the importance of “directing forces”, using the analogy of ordering in liquid crystals discussed in the work of Lehman. In some cases, it was already clear that a pre-existing template controlled the growth of the inorganic material and D’Arcy Thompson shows how the complex forms of the silicate skeletons of sponges and radiolarians can be explained using simple models based on froths and bubbles that somehow constrain the growth of the inorganic material in their interstices. This presence of some controlling growth mechanism distinguishes two kinds of biomineralization process. Biologically induced mineralization occurs when minerals form as a byproduct of the activity of cells or their interaction with the surrounding environment. The morphologies and phases observed are usually similar to those seen in nonbiological systems. Biologically controlled mineralization is regulated by the organism, and the resulting structures have a physiological function (or sometimes functions). In this review, we are concerned only with the second case, biologically controlled mineralization. * Address for corresponding author: Department of Engineering Materials, Sir Robert Hadfield Building, University of Sheffield, Mappin St., Sheffield S1 3JD, U.K. Telephone: +44 114 222 5957. Fax: +44 114 222 5943. E-mail: j.harding@sheffield.ac.uk. Chem. Rev. 2008, 108, 4823–4854 4823

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call