Abstract

The geometries of the reactant, products, and transition states involved in the decomposition pathways of the CH3OCF2O• radical formed during the photooxidation of CH3OCHF2 (HFE-152a) have been optimized and characterized at the DFT-B3LYP level of theory using the 6–311G(d,p) basis set. Single-point energy calculations have been made at the G2M (CC,MP2) level of theory. Out of the four prominent decomposition channels considered, the β-C–O bond scission is found to be the dominant path involving a barrier height of 9.78 kcal mol–1 (1 cal = 4.184 J). The thermal rate constant for the above decomposition pathway is evaluated using canonical transition state theory (CTST) and was found to be 5.27 × 104 s–1 at 298 K and 1 atm (1 atm = 101.325 kPa).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call