Abstract
Immune therapy is generally seen as the future of cancer treatment. The discovery of tumor-associated antigens and cytotoxic T lymphocyte epitope peptides spurned intensive research into effective peptide-based cancer vaccines. One of the major obstacles hindering the development of peptide-based cancer vaccines is the lack of humoral response induction. As of now, very limited work has been performed to identify epitope peptides capable of inducing both cellular and humoral anticancer responses. In addition, no research has been carried out to analyze the structure and properties of peptides responsible for such immunological activities. This study utilizes a machine learning method together with interpretable descriptors in an attempt to identify parameters determining the immunotherapeutic activity of cancer epitope peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.