Abstract

The kinetics of hydrogen atom abstraction reactions of methyl difluoroacetate (CF2HCOOCH3) by OH radical has been studied by quantum mechanical method. The geometry optimisation and frequency calculation of the titled compound was performed with density functional theory using hybrid meta density functional MPWB1K with 6-31+G(d,p) basis set. Transition states have been determined and intrinsic reaction coordinate (IRC) calculation has been performed to ascertain that the transition from reactants to products was smooth through the corresponding transition state. Energy values are refined by making single point energy calculation at G3B3 level of theory and an energy level diagram is constructed. The standard enthalpies of formation of reactants and other species formed during the reaction were calculated using isodesmic method. The rate constants are calculated using canonical transition state theory and the overall rate constant is determined to be 1.35×10−13 cm3 molecule−1 s−1 at 298 K and 1 atmospheric pressure. Tunnelling has been taken into account in the determination of the rate constant because it plays a critical role at low temperature especially when transfer of hydrogen takes place. The calculated value is found to be in good agreement with the experimentally determined value of 1.48×10−13 cm3 molecule−1 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call