Abstract

This study explores the hybrid composite’s electrical conductivity response under uniaxial tensile strain, wherein conductive nanowires and insulating particulate fillers are integrated within a flexible polymer matrix. We develop a Monte Carlo–based computational model and analyze the significant influence of particulate fillers on the strain response of the electrical conductivity. The particulate fillers induce both the exclusive volume and nanowire bending effects, significantly contributing to determining the hybrid composites’ electrical conductivity. The exclusive volume effect mitigates conductivity changes under external deformation, decreasing the conductivity change rate as the particulate filler content increases when the exclusive volume effect is dominant. Conversely, the nanowire bending effect boosts conductivity change under external deformation, so when it predominates over the exclusive volume effect, the conductivity change rate increases with higher particulate filler content. The insights from the study aid in designing and optimizing flexible electronic materials resilient to mechanical deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.