Abstract

AbstractEthene and two kinds of nitrating reagents (HNO3 and N2O5) were included in respective molecular systems, which progressed through a two‐stage electrophilic and free radical nitrosubstitution, resulting in the corresponding nitroethene compounds. Subsequent halogenation (using Cl2 and Br2) and amination (using ammonia) were then performed, also by electrophilic and radical substitution, to produce the target 1,1‐diamino‐2,2‐dinitroethene (FOX‐7) derivatives. All transition state species were identified using a two‐ or three‐structure Synchronous Transit‐Guided Quasi‐Newton between the Cartesian coordinates of the related molecular systems at specific reaction stages. The modeling results suggest that N2O5 is the better agent for nitration and bromine is suitable for use in halogenation. The comparable activation energies throughout the reaction stages were considered to imply the most feasible pathways of FOX‐7 synthesis. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call