Abstract

This study numerically investigates the pathological changes of fluid flow in cartilage contact gap due to the changes in cartilage surface roughness and synovial fluid characteristics in osteoarthritic (OA) condition. First, cartilage surface topographies in both healthy and OA conditions are constructed using a numerical approach with consideration of both vertical and horizontal roughness. Then, constitutive equations for synovial fluid viscosity are obtained through calibration against previous experimental data. Finally, the roughness and synovial fluid information are input into the gap flow model to predict the gap permeability. The results show that the rougher surface of OA cartilage tends to decrease gap permeability by around 30%–60%. More importantly, with the reduction in gap size, the decrease in gap permeability becomes more significant, which could result in an early fluid ultrafiltration into the tissue. Moreover, it is demonstrated that the pathological synovial fluid has more deleterious effects on the gap permeability than the OA cartilage surface, as it could potentially increase the gap permeability by a few hundred times for pressure gradients less than 106 Pa/m, which could inhibit the fluid ultrafiltration into the tissue. The outcomes from this research indicate that the change in fluid flow behaviour in contact gap in OA condition could significantly affect the function of articular joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call