Abstract

Abstract Density functional study (DFT) is performed for understanding the reactivity, aromaticity, and UV-visible absorption spectra of chrysene-based materials. Effect of BN doping on the said parameters are analyzed along with the effect of –Me (methyl), –OH (hydroxyl), –CHO (formyl) –COOH (carboxyl) and –CN (cyano) substituents. Global reactivity parameters viz. energy of HOMO (E HOMO), global hardness (η), chemical potential (μ) and electrophilicity (ω) are computed. Nucleus independent chemical shifts (NICS) values are estimated to study the variation in aromaticity. Time dependent density functional theory (TD-DFT) is used to study the UV–Visible absorption spectra. Effects of BN doping and substituents on corresponding dipole moments and band gaps are also analyzed. Presence of BN unit and/or substituents induced considerable impact on global reactivity, dipole moment, band gap and aromaticity of the chosen systems, especially for BN doped chrysene at the edge. Absorption spectra which are red shifted in presence of BN and substituents are mostly found within the UV-region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call