Abstract

We present a numerical study on the hydrodynamic performance of undulation NACA0012 foil in the near wake of D-section cylinder. Computations are conducted using unsteady incompressible Navier–Stokes equations with a moving adaptive mesh based on laminar flow. Investigations are focused on the effect of distance ratio between foil tip and centre of cylinder ( L/ D≤2.0) on the thrust/drag performance of foil and cylinder at various foil undulation frequency ( St). We found that, foil thrust coefficient ( C t ) increases considerably with the appearance of cylinder and an optimal distance exists at which C t reaches maxima. The maximum increment is about eleven times that of its counterpart of single foil, which is obtained at St=0.23 and L/ D=0.5. Our results for the cylinder drag coefficient ( C d ) observed the existence of optimal parametric map, combined with various gap ratios and foil frequencies. With these parameters, insertion of an undulation foil can significantly lead to the drag reduction indicating that undulating foil could work efficiently as a passive vortex control device for cylinder drag reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.