Abstract

Quinoline scaffold is one of the most often perceived parts in biologically active organic compounds. In light of this, an quinoline containing 2-arylidene derivative; (E)-7-((2-chloroquinolin-3-yl)methylene)-1,2,6,7-tetrahydro-8H-indeno[5,4-b]furan-8-one (2-CQMIF) is studied by using density functional theory (DFT) at B3LYP/6-311G(d,p) basis set. The geometry of the 2-CQMIF molecule was optimized by using B3LYP/6-311G(d,p) basis set and in-depth structural analysis on bond lengths and bond angles has been discussed. The frontier molecular orbital (FMO) analysis and various quantum chemical parameters are calculated and discussed for the better understanding of chemical behavior of the title molecule. The theoretical and experimental UV-Visible absorption bands are compared. The TD-DFT method at B3LYP/6-311G(d,p) basis set was employed to predict the electronic excitations. The scaled theoretical vibrational assignments calculated at 6-311G(d,p) level are compared with the experimental results and the good agreement is observed between them. Molecular electrostatic potential (MEP) surface investigation is presented to understand the reactivity sites of the title molecule. Besides, some thermodynamic properties have also been computed at same level of theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.