Abstract
<abstract><p>Cancer remains a major health concern worldwide, causing high rates of morbidity and mortality. Although chemotherapy with antitumor drugs is the most common treatment for cancer, certain disadvantages limit its usage, such as the damage caused to healthy cells, side effects, and toxicity. Owing to their geometric and mechanical properties, nanotubes are promising nanocarriers of anticancer drugs. Here, the interaction energies of the encapsulation of an anticancer drug by single-walled nanotubes were calculated through the application of the 6–12 Lennard-Jones function with a continuous approach. In particular, the interaction energies of the 5-fluorouracil drug entering three different nanotubes (carbon, silicon and boron nitride) and the offset equilibria inside the nanotubes were obtained. This study aimed at determining the appropriate type and favorable size of nanotubes that can be used to encapsulate the 5-fluorouracil drug. The results showed that the optimal radii of nanotubes for encapsulating the 5-fluorouracil drug were approximately 6.08, 6.05 and 5.98 Å for carbon, boron nitride and silicon nanotubes, corresponding to -16.55, -18.20 and -17.81 kcal/mol, respectively.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.