Abstract

A method for geometrical and topological modeling the evolution of close-cell metallic foams based on the Voronoi tessellation in three-dimensional space is presented. Numerical computations were carried out to examine the evolution of the bubble size distribution and topological and geometric properties of aluminum foams in the liquid state, which were implemented by using McPherson’s new theory on coarsening of microstructures as well as the topological transition rules (T1 and T2 processes) in 3D foams, accounting for remarkable effects of both the gas diffusion and surface tension. Computational results show that the bubble size distributions of metallic foams are strongly coupled to the evolution of the cellular structure and dependent on the gas diffusivity and surface tension. The way of foam coarsening can be expressed as RR 32=−mt 2+1 approximately, and gas diffusion between bubbles dominates the evolution of bubble sizes and foam structures. It is found that the average number of faces per bubble is 〈f〉=13.8, which is in good agreement with the values reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.