Abstract

Gaseous nitrogen is planned to be used as a seeding species to control the power flux in future fusion reactors with ITER-like divertors. Nitrogen interacts with the first wall materials, particularly with tungsten, leading to sputtering and changes of chemical composition of the material. We use the molecular dynamics methods with a recently developed WN potential to analyze the mechanisms leading to these modifications. We performed the simulations of cumulative nitrogen irradiation runs of tungsten surface. The sputtering yields obtained in our cumulative runs are in good agreement with experimental data. We observe the decrease of the tungsten sputtering yield with nitrogen accumulation and determine the reasons for the observed trend. The cluster analysis reveals the composition of the sputtered particles, suggesting the swift chemical sputtering process that occurs under the prolonged nitrogen irradiation of tungsten. We also observe and analyze the nitrogen saturation in the temperature range below the thermal stability limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call