Abstract

Density functional theory (DFT) calculations were utilized to assess the drug delivery efficiency of phosphorene carrier for nebivolol drug to treat cardiovascular diseases. The optimized structures, excited state, and electronic properties of nebivolol, phosphorene, and nebivolol-phosphorene (nebivolol-PH) complex were considered to determine the drug delivery ability of phosphorene at the target site. The increased dipole moment (6.08 D) results in the higher solubility of the complex in polar solvents (water). Weak interactive forces between nebivolol and phosphorene were demonstrated by the non-covalent interaction (NCI) plot that facilitated the offloading of nebivolol at the targeted area. The analysis of frontier molecular orbitals (FMOs) revealed that during excitation, the charge was transferred from nebivolol as a higher occupied molecular orbital (HOMO) to phosphorene as a lowerunoccupied molecular orbital (LUMO). Thus, the charge-transfer process was further studied by charge decomposition analysis (CDA). The calculated results at the excited state for the nebivolol-PH complex exhibited that the maximum wavelength (λmax) was red-shifted by 6nm in the gas phase. The electron-hole theory and photoinduced electron transfer (PET) processes were carried out for the exploration of different excited states of the complex. Additionally, phosphorene with + 1 and - 1 charge states indicated the minor structural changes and provide the stable nebivolol-PH complex. This theoretical study also investigated that phosphorene can be exploited as an effective carrier for the delivery of a therapeutic agent as nebivolol to treat cardiovascular diseases. This work will also encourage the researchers to investigate the other 2D nanoparticles as a nano-drug delivery system (NDDS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.