Abstract

In this work, a large-eddy simulation of bubble plumes in linearly stratified environments is presented. The gas bubbles are treated as Lagrangian particles. The intrusion and peeling are clearly manifested in the computed flow fields. The results of about 50 simulations with different parameters reveal the importance of bubble source area for plumes on the laboratory scale. A new type of bubble plume with rapid and distinct peelings is observed which is favored by large source areas. With a proper normalization, the present data points collapse onto a single straight line after applying a virtual-source correction which reflects the source-area effect. These results provide a plausible explanation for the scatter of the previous experimental and computational data in literature. A simple relation between the trap height and the peel height is observed and its mechanism is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.