Abstract

This paper describes density-functional-theory-based computations of resonance Raman (RR) spectra of ligand molecules adsorbed to the surface of a Cd16Se13 cluster. Signals from asymmetric vibrational modes of ligand binding groups, such as the asymmetric O–C–O stretching modes of carboxylates, are enhanced relative to the symmetric vibrational modes when the excitation energy is on-resonance with the excitonic energy of the cluster. Certain ligand molecules have frontier orbitals with the correct energies and symmetries to mix with the orbitals of the CdSe cluster, and as a result, the wave functions of the electron and the hole delocalize from the cluster onto the ligand molecules; experimentally, this delocalization results in a bathochromic shift of the band edge excitonic absorption. Increased excitonic delocalization results in greater vibronic coupling between the exciton and the ligand vibrations and, on average, preferential enhancements in the RR signals of those vibrations. This work suggests t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.