Abstract

The aim of the present study is to provide computational insight using dispersion-corrected density-functional calculations into the reactivity properties of modified cytosine in the gas phase and in aqueous solution, whereby special emphasis is put on systems that are obtained through demethylation and methylation. Since this field is relatively incipient, our goal is to identify relationships between reactivity and stability for the modified compounds to understand their biological functionalities. Our results show that addition of a methyl, hydroxylmethyl, formyl, or carboxyl group reduces the length of the nearest hydrogen bond between the cytosine-guanine (CG) base pair and increases the length of the longest hydrogen bond of the DNA base pair. © 2017 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.