Abstract

In this research work, we examined the decomposition mechanisms of N-substituted diacetamides. We focused on the substituent effect on the nitrogen lone-pair electron delocalization, with electron-withdrawing and electron donor groups. DFT functionals used the following: B1LYP, B3PW91, CAMB3LYP, LC-BLYP, and X3LYP. Dispersion corrections (d3bj) with Becke-Johnson damping were applied when necessary to improve non-covalent interactions in the transition state. Pople basis sets with higher angular moments and def2-TZVP basis sets were also applied and were crucial for obtaining consistent thermodynamic parameters. The proposed mechanism involves a six-membered transition state with the extraction of an α hydrogen. Several conformers of N-diacetamides were used to account for the decrease in entropy in the transition state in the rate-determining state. All calculations, including natural bond orbital (NBO) analyses, were performed using the Gaussian16 computational package and its GaussView 6.0 visualizer, along with VMD and GNUPLOT software. The isosurfaces and IBSIs were calculated using MultiWFN and IGMPlot, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.