Abstract

This chapter aims to present the authors’ recent findings from studies on the computational biomechanics of blood flow in human arteries and its application to the hemodynamics of cerebral aneurysm initiation. They first briefly outline the techniques of computational fluid dynamics used in blood flow simulations of anatomically realistic artery models reconstructed from medical images acquired with CT or MRI. Then, the time course of the blood flow velocity field in the medical image-based model of a human internal carotid artery (ICA) is shown as a result of a pulsatile blood flow simulation with CFD techniques. Finally, the chapter presents an overview of the concept of a novel hemodynamic indicator for cerebral aneurysm initiation, the gradient oscillatory number (GON). The distribution of the GON for the medical image-based ICA model is also demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call