Abstract

Flame spray pyrolysis (FSP) offers a proven and inexpensive route for nanoparticle production. To date, the research on FSP made nanoparticles was focused mostly on the lab scale and medium scale production. Scale-up requirements for FSP process control need to be developed to define the operation window at industrial scale production rate. In this work, FSP synthesis of ZrO2 particles has been addressed from a process intensification perspective, since FSP characteristics perfectly fit into several fundamental process intensification aspects. The possible solutions for the precursor delivery system and the atomization quality at high precursor concentrations were investigated to intensify the production rate and reduce the cost of an additional solvent. The simulation results showed that the particle size could be controlled at near a constant (∼20nm) while the production rate was intensified by a factor of 5. Finally, the potential of gas to liquid flow ratio (GLFR) and replacing oxygen dispersion gas by air for further reducing the particle size and the production cost were investigated. The simulation results can be used as a framework of PI in FSP process design at industrial scale production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call