Abstract

Density functional theory (DFT), Møller-Plesset second-order perturbation theory (MP2), and semiempirical methods are employed for the geometry optimization and thermochemistry analysis of π-π stacked di-, tri-, tetra-, and pentamer aggregates of the fused polycyclic aromatic hydrocarbons (PAHs) naphthalene, anthracene, phenanthrene, tetracene, pyrene, and coronene as well as benzene. These aggregates (stabilized by dispersion interactions) are highly relevant to the intermolecular aggregation of asphaltenes, major components of heavy petroleum. The strength of π-π stacking interaction is evaluated with respect to the π-stacking distance and thermochemistry results, such as aggregation enthalpies, entropies, and Gibbs free energies (ΔG(298)). For both π-stacking interplanar distances and thermochemistry, the ωB97X-D functional with an augmented damped R(-6) dispersion correction term and MP2 are in the closest agreement with the highly accurate spin-component scaled MP2 (SCS-MP2) method that we selected as a reference. The ΔG(298) values indicate that the aggregation of coronene is spontaneous at 298 K and the formation of pyrene dimers occurs spontaneously at temperature lower than 250 K. Aggregates of smaller PAHs would be stable at even lower temperature. These findings are supported by X-ray crystallographic determination results showing that among the PAHs studied only coronene forms continuous stacked aggregates in single crystals, pyrene forms dimers, and smaller PAHs do not form π-π stacked aggregates. Thermochemistry analysis results show that PAHs containing more than four fused benzene rings would spontaneously form aggregates at 298 K. Also, round-shaped PAHs, such as phenanthrene and pyrene, form more stable aggregates than linear PAHs, such as anthracene and tetracene, due to decreased entropic penalty. These results are intended to help guide the synthesis of model asphaltene compounds for spectroscopic studies so as to help understand the aggregation behavior of heavy petroleum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.