Abstract

ABSTRACTAb initio calculations have been accomplished to study the cooperativity between the halogen bond and tetrel bond in the XCN⋅⋅⋅F2CO⋅⋅⋅YCN (X = H, F, Cl, Br; Y = F, Cl, Br) complexes. F2CO at the same time plays the role of Lewis acid with the π-hole on the C atom and Lewis base with the O atom to participate in the tetrel bond and in halogen bond, respectively. According to the geometry survey, the effect of a tetrel bond on a halogen bond is more pronounced than that of a halogen bond on a tetrel bond and the intermolecular distances in the triads are always smaller than the corresponding values in the dyads. In all cases, the halogen bond and tetrel bond in the termolecular complexes are stronger compared with those in the bimolecular complexes. So, from the intermolecular distances, interaction energies and many-body interactions demonstrate that there is positive cooperativity between the halogen bond and tetrel bond. The molecular electrostatic potential, atoms in molecules and natural bond orbital methodologies are used to analyse the nature of interactions of the complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call