Abstract

The conformational preferences of peptide T (ASTTTNYT) were analysed by means of computational methods. A thorough exploration of the conformational space was carried out within the framework of the molecular mechanics approach, using simulated annealing as a searching strategy. Specifically, in order to obtain a subset of low-energy conformations with energies close to the global minimum as complete as possible, a simulated annealing protocol was repeated several times in a recursive fashion. The results of the search indicate that the peptide exhibits a alpha-helical character although most of the conformations characterized, including the global minimum, can be described as bent conformations. Conformations exhibiting beta-turn motives previously proposed from NMR studies were also characterized, although they are not very predominant in the set of low-energy conformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.