Abstract

This study involved the assessment of the MNI2SX/Def2TZVP/H2O model chemistry to enhance the understanding of the structural composition of the marine peptide Hemiasterlin and its derivatives A and B used in cancer treatment. The Conceptual Density Functional theory was used in the calculation of molecular properties of the system chemical descriptors during the study. Integration of the active molecular regions into their respective Fukui functions was used in the selection of electrophilic and nucleophilic attacks. Additionally, the proposed correlation between global hardness and the pKa was used as the basis of deriving accurate predictions for the pKa values while a homology technique was used in the prediction of bioactivity and bioavailability scores of the peptides under investigation.

Highlights

  • The structural diversity of numerous biologically active metabolites that are found in the marine ecosystems has been used in the development of new categories of agents that can be used in anticancer therapies

  • This study involved the assessment of the MNI2SX/Def2TZVP/H2O model chemistry to enhance the understanding of the structural composition of the marine peptide Hemiasterlin and its derivatives A and B used in cancer treatment

  • Consistent with our previous work [20]-[25] [27]-[34], the calculation of the electronic properties needed for the determination of the chemical reactivity descriptors within the KID (Koopmans in DFT) procedure were obtained by resorting to the MN12SX/Def2TZVP/H2O model chemistry [35] [36] [37] under the Solvation Model Density (SMD) parameterization of the Integral Equation Formalism-Polarized Continuum Model (IEF-PCM) [38]

Read more

Summary

Introduction

The structural diversity of numerous biologically active metabolites that are found in the marine ecosystems has been used in the development of new categories of agents that can be used in anticancer therapies. Researchers have carried out numerous studies to understand the structural and biosynthetic assembling of the marine agents through re-engineering techniques, interdisciplinary development processes, and innovative manipulation within the gene clusters of these agents. These processes are key in enhancing the pharmaceutical properties of the marine agents when compared to the utilization of the natural products directly in the development of human medicine [1] [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call