Abstract

The present work is about metamaterial-based foundation design for attenuating seismic wave propagation. Metamaterials are artificially designed structures engineered for novel properties. These artificially designed structures can exhibit properties, which can be contra-intuitive and sometimes not available in nature. These metamaterials have frequency regions (called as bandgaps) for which significant attenuation of – P-waves and S-waves takes place. In this work, bandgaps have been computed using the finite element method and compared with the literature. Further, harmonic excitation is provided, and the frequency response function through the metamaterial region has been evaluated for various layers of the structure. The results show high S- and P-wave attenuation in the bandgap region, which can be engineered by designing the unit cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.