Abstract

Radiofrequency discharges can generate non-equilibrium and stable micro-plasmas without a streamer in micro-hollow cathode reactors. In this work, we present the results of a fluid model describing the mechanisms occurring in a micro-reactor in argon plasma, generated by an excitation of 13.56 MHz at high pressures (100 Torr) with and without a secondary emission of electrons. The results of the simulation improve the understanding of the effect of micro-hollow cathodes and of the influence of excited atoms in ionization and sustainment of argon discharge at low voltage (150 V). Simulation results showed that the maximum of penning ionization and stepwise ionization rates are respectively about 25% and 11% of the maximum of direct ionization rate. The metastable atom density reaches a maximum value of 1020/m3 inside the hole and have also two humps near to oppsite cathodes. Accordingly the excitation rate is significant in all the space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.