Abstract
Abstract We develop, and implement in a Finite Volume environment, a density-based approach for the Euler equations written in conservative form using density, momentum, and total energy as variables. Under simplifying assumptions, these equations are used to describe non-hydrostatic atmospheric flow. The well-balancing of the approach is ensured by a local hydrostatic reconstruction updated in runtime during the simulation to keep the numerical error under control. To approximate the solution of the Riemann problem, we consider four methods: Roe-Pike, HLLC, AUSM+-up and HLLC-AUSM. We assess our density-based approach and compare the accuracy of these four approximated Riemann solvers using two classical benchmarks, namely the smooth rising thermal bubble and the density current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Applied and Industrial Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.