Abstract

Numerical simulation of the natural convection and entropy generation in an air-filled cubical cavity with active lateral walls is performed in this work. Both the lateral front and right sidewalls are maintained at an isothermal cold temperature. While an isothermal hot temperature is applied for both the lateral back and left sidewalls. The upper and lower walls are kept adiabatic. Entropy generation rates due to the fluid friction and the heat transfer are simulated by using the Second law of thermodynamics. Results are illustrated for Rayleigh numbers varied from (103 ? Ra ? 106). It was shown that the increase in the Rayleigh number leads to increase the average Nusselt number and to decrease the Bejan number. Also, it was found that both, Sth, and Stot, increase slightly with the increase in Rayleigh number until they reach (Ra = 105) and then begin to jump after this value. After (Ra = 105), the increase in both, Stot, and Sfr, is greater than Sth. Moreover, it was observed that iso-surfaces of Stot are similar to Sth at (103 ? Ra ? 105), while they are similar to Sfr at high Rayleigh number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.