Abstract

ABSTRACT A mathematical model is presented to analyze the mixed convective magnetohydrodynamic (MHD) flow of two different nanofluids within a cavity saturated with porous media. The Tiwari–Das model, along with Maxwell and Brinkman formulations, is adopted to feature the characteristics of the considered nanofluids. The two different working fluids of this investigation are considered aluminum oxide -water and copper -water nanofluids. The impacts of viscous dissipation, internal heat generation/absorption, magnetic field, and Joule heating are examined in this model. The robust, well-tested Marker And Cell (MAC) algorithm is utilized to numerically solve the transformed, dimensionless, nonlinear coupled two-dimensional momentum and energy conservation equations with the prescribed wall boundary conditions. The comparative study finds an upright accordance with the literature. The effect of various pertinent parameters on the rate of heat transfer, isotherms and streamlines contour distributions in the enclosure is graphically displayed. With an increment in nanoparticles volume fraction, the velocity and heat transfer inside the rectangular enclosure are increased. The -water nanofluid and -water nanofluid in order have and higher average heat transfer rate when nanoparticles are suspended into water. This kind of simulation may be useful in electromagnetic nanomaterials processing and hybrid fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call