Abstract

Single-atom catalysts (SACs) represent the ultimate goal of nanocatalysis fields. However, complex synthesis processes and pyrolysis inactivation problems are the two main challenges that plague the development of SACs. In this work, we propose that the ultralow-energy ion-implantation (ULEII) method could be utilized to simply and efficiently synthesize stable SACs. Our simulation results of Pt-ion implantation into graphene indicate that the total doping efficiency, including direct displacement doping and indirect trap doping, can be effectively optimized by delicately adjusting the energy of incident ions. Further systematic molecular dynamics simulations and first-principles calculations demonstrate that irradiation-induced vacancy defects can effectively capture and anchor adsorbed metal atoms on the graphene surface. The stability and migration characteristics of various defects are also clearly elucidated. Theoretically, by selecting an optimal ion energy, the ULEII method can achieve a doping efficiency as high as 73.4% .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call