Abstract

Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.

Highlights

  • The intensive usage of improvised explosive devices (IED) as weapons in the ongoing conflicts and terrorist activities around the world has led to the prevalence of blast-induced traumatic brain injury

  • The primary blast injury is due to the direct effects of the blast wave force on the human head; the secondary blast injury is induced by the impact of the blast-propelled segments; the tertiary blast injury results from the collision of blast-propelled people with the ground or a rigid wall; the quaternary blast injury results from the toxic gases or heat generated from blast, and includes all the other injury effects [22]

  • The intracranial pressure pattern at the blast proximal site and distal site predicted by the present study is quite different from the "coup and contrecoup" intracranial pressure pattern observed for a human head sustaining impact or acceleration

Read more

Summary

Introduction

The intensive usage of improvised explosive devices (IED) as weapons in the ongoing conflicts and terrorist activities around the world has led to the prevalence of blast-induced traumatic brain injury (bTBI). The increased survival rate of blast victims results in the increased number of people suffering from bTBI. The primary blast injury is due to the direct effects of the blast wave force on the human head; the secondary blast injury is induced by the impact of the blast-propelled segments; the tertiary blast injury results from the collision of blast-propelled people with the ground or a rigid wall; the quaternary blast injury results from the toxic gases or heat generated from blast, and includes all the other injury effects [22]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.