Abstract

Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in [Formula: see text]-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to analyze the fluid recirculation area inside different microgrooves. The height of recirculation area in the bottom of microgroove could affect the cell’s attachment, and also materials delivery to attached cells, so the height of recirculation area may have optimum value. In addition, we analyzed the fluid drag force on cell movement toward the microgroove. This parameter was proportional to the fluid velocities in [Formula: see text] and [Formula: see text] directions in different microgrooves geometries. In different microgrooves’ geometries the fluid velocity in [Formula: see text]-direction did not change, but the fluid velocity in [Formula: see text]-direction decreased inside the microgroove. Therefore, the cell movement time inside the microgroove increased, and also the drag force in [Formula: see text]-direction could push the cells toward the bottom due to the lower drag force in [Formula: see text]-direction. The percentages of negative shear stress and average shear stress on the adhered cell surface were also calculated. The lower average shear stress, and negative shear stress around 50% on the cell surface were against cell detachment from the substrate. The results indicated that at the constant fluid inlet velocity and microchannel height, microgroove geometry and ratio of cell size to the microgroove size play pivotal roles in the cell initial adhesion to the substrate as well as the cell detachment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call