Abstract

Polycyclic aromatic hydrocarbons (PAHs) constitute a large group of organic pollutants produced from either natural or artificial sources during the incomplete combustion of fossil fuels or derived from various industrial processes (such as refinery processes of crude petroleum). They are seriously hazardous to human health, and removing them is of major importance. The complexation likeliness with and selective recognition of PAH guests by endo-functionalized molecular tube hosts (host-abu and host-abtu) in a nonpolar medium are investigated using classical molecular dynamics simulation and quantum calculation to probe the factors and the molecular mechanism involved in complexation processes. We examine the role of different guest molecules in the structural changes of hosts, a prelude to van der Waals interactions and binding free energy in the complexation process. These types of host-guest interactions depend on various factors. We find that (i) both the host molecules (host-abtu and host-abu) interact with the guest π-electron cloud almost equally and (ii) these interactions also depend on the molecular size of PAHs. The larger the nonpolar surface area of PAHs, the greater the interactions with the host, and the more extensive the π-electron cloud of the guest, the stronger the interactions. The linear PAHs interact more strongly than isomeric branched/curved PAHs, and the presence of heteroatoms on PAHs decreases the interactions with the host by creating repulsion between the lone pairs of heteroatoms and the π-electron cloud of the host. Noncovalent van der Waals interactions and N-H···π interactions dominate the high affinities of PAHs toward host-abu and host-abtu. The potential of mean force and molecular mechanics Poisson-Boltzmann surface area calculations reveal that all host-guest complexes are energetically stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.