Abstract

The adsorption of CO and NO molecules on the MgO nanotubes was investigated using density functional theory calculations. The adsorption energies of CO and NO were estimated to ranging from −0.35 to −0.16 eV and −0.28 to −0.13 eV, respectively. The most stable adsorption configurations are those in which the C or N atoms the adsorbates are close to the Mg atom of the tube surface. It was found that the MgO nanotubes selectively act against the CO and NO gaseous molecules. Their electrical conductivity are sensitive to NO gaseous molecule while is not to CO one, indicating that they may be potential sensors for NO molecule. These findings are characterized by analyzing the features in the electron density of states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.