Abstract

In this paper, the results of a computational study on the unsteady flow features in three-dimensional empty cavities and a cavity with a store are presented. Flow simulations with a turbulence model based on a hybrid method, which behaves as a standard RANS model within the attached boundary layer and as a LES Sub-Grid Scale model in the rest of the flow, including the separated regions, are used in this study. The time-mean flow study showed the existence of spanwise flow in the 3D cavity. In the unsteady flow study, computed near-field acoustic spectra were for empty cavity as well as cavity-withstore cases. Unsteady results from an empty cavity case are compared with experimental data and the frequency of the dominant mode is in good agreement with the experiment. Study of unsteady pressure spectra for the cavity-with-store case found the presence of many peaks and the corresponding mode frequencies were found to agree well with the Rossiter modes. The mean flowfield visualisation for the cavity-with-store case clearly showed that the mean flowfield was effectively divided into two halves with signifiant reduction of the spanwise flow across the cavity width. This blockage effect of store and strut on the spanwise flow is thought to have reduced the interaction, and subsequent non-linear coupling between, the Rossiter modes. This may be the reason for the coexistence of multiple modes without the coupling among them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.