Abstract

We have investigated computationally the gold and palladium cocatalyzed reaction of alkynes with vinylstannane. Our work has involved a careful and thorough exploration of different mechanistic possibilities. We find that palladium acting alone as a catalyst leads to a very high reaction barrier, consistent with the experimental observation that there is no reaction in the presence of just palladium. However, the involvement of a gold(I) complex lowers the reaction barrier considerably, and the vinylstannylation reaction can proceed with a modest activation energy of about 10 kcal/mol. Our key finding is that the introduction of the gold complex avoids the formation of high-energy structures involving vinyl species in a trans arrangement on palladium. Our work confirms the role of intermediates containing both palladium and gold as suggested by Blum. For the gold–palladium cocatalyzed reaction, we also investigated an alternative mechanism suggested by Blum. With some modifications, this mechanism has a slightly higher reaction barrier, but if it does occur, then we predict a strong dependency on the counterion, in agreement with related experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.