Abstract

Density functional theory (DFT) calculations were carried out to analyze the electronic and structural properties of pristine and aluminum or phosphorus doped (8,0) single walled carbon nanotube (SWCNT) as a sensor for the detection of nitrogen dioxide (NO2) and ammonia (NH3). The binding energies, equilibrium gas-nanotube distances, the amounts of charge transfer and molecular orbital schemes as well as the density of states have been calculated and used to interpret the mechanism of gas adsorption on the surface of nanotubes. In agreement with the experimental data, our results show considerable binding energy and energy gap alteration due to the adsorption of NO2 on pristine SWCNT. The results reveal that the doping of both Al and P atoms increase the capability of the nanotube for the adsorption of NO2, and the effect is more significant for the Al-doped nanotube. The Al-doped nanotube can also be considered as a good sensor for NH3 due to its high binding energy, considerable amount of charge transfer and energy band gap alteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.