Abstract

The mechanism that accounts for the observed experimental activation energy for the decomposition of ethylamine (EA) is still unknown. This paper reports the first detailed study of possible mechanisms for the pyrolysis of second-stage cracking product of ethylamine: the decomposition reaction of methanimine, ethanimine, and aminoethylene. Investigated reactions characterize either H2 elimination or 1,3-proton shift. These pathways result in the removal of H2, CH4, and NH3; and the formation of hydrogen cyanide, acetylene, acetonitrile, ethynamine, and ketenimine. The IRC analysis was carried out for all transition state structures to obtain the complete reaction pathways. The stationary points were fully optimized at B3LYP and MP2 levels of theory using the 6-31G(d), 6-31G(2df,p), and 6-31++G(3df,3dp) basis sets. Based on comparing energetic requirements, we find 1,3-proton shift is the most probable pathway for the decomposition of ethanimine. The decomposition reaction of ethenamine was the most plausible reaction with an activation energy of 297kJmol−1 calculated at the composite method of G4MP2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.