Abstract

Electrode morphology has significant influence on the performance of lithium-ion batteries in that it controls electrical conductivity and electrode utilization by establishing electrical connectivity in the electrode. The present study investigates the effect of the electrode morphology on battery performance by combining two different mathematical models. First, a two-dimensional, direct numerical simulation (DNS) model is introduced, which stochastically generates electrode morphology and calculates electrical conduction and electrode utilization. Various simulations are conducted to evaluate the effect of the active particle coating, conductive agent loading, particle size, and electrode compression by using the DNS model. Second, data acquired from the DNS model are applied to the blended-electrode model to evaluate battery performance. Calculation result confirms that electrode morphologies have significant effects on both capacity and power of lithium-ion batteries. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.